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Abstract
We consider the Coulomb drag between two metal rings in which the long-
range Coulomb interaction leads to the formation of a Wigner crystal. The
first ring is threaded by an Aharanov–Bohm flux, creating a persistent current
J0. The second ring is brought into close proximity to the first and due to the
Coulomb interaction between the two rings a drag current JD is produced in
the second. We investigate this system at zero temperature for perfect rings as
well as the effects of impurities. We show that the Wigner crystal state can in
principle lead to a higher ratio of drag current to drive current JD/J0 than in
weakly interacting electron systems.

1. Introduction

Coulomb drag between current-carrying systems has been studied in numerous papers
both experimentally and theoretically [1–6]. The earliest experiments were done in two-
dimensional systems. In this configuration the electrons are confined to two-dimensional
layers. In one such layer a current is driven and another conducting layer is brought to within
close proximity of the first. The Coulomb interaction between the electrons in these two
layers causes a transfer of momentum and the second layer acquires a current. This current is
referred to as the drag current.

Recently, the phenomenon of Coulomb drag in one-dimensional systems has attracted
much attention, particularly with regard to nanowires and nanotechnology [7–11]. The basic
description of the one-dimensional case is identical to that in two dimensions. In the typical
setup, a current is driven in a one-dimensional wire and a second wire is brought close to
the first. The Coulomb interaction between the charges in these wires causes a drag current
to be produced in the second wire. In all of these systems the time-averaged charge density
of the systems is translationally invariant. The coupling of the two systems is due to charge
fluctuations therein.

It is known, however, that the long-range character of the Coulomb interaction can lead to
the formation of a Wigner crystal in which the electrons become localized and form a periodic
lattice. Numerical simulations on one-dimensional systems indicate that an arbitrarily weak
long-range interaction will lead to the formation of a Wigner crystal [12, 13]. This long-range
nature of the Coulomb force should be apparent for low electron densities.
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In this paper we consider the drag between two such Wigner crystals. The principle
difference between our investigation and those of [7–11] is not in the particular setup (i.e.
rings versus straight wires) but in the nature of the charge density of the system. It is evident
that the Wigner crystal has a non-uniform charge distribution and we will show that this in
principle can lead to a much higher value of the drag current.

2. Classical drag

It is the aim of this section to analyse from a classical perspective some aspects of current drag
that we may expect in a quantum mechanical treatment of the Wigner crystal. The Wigner
crystal is a system where the electrons are effectively localized, so it is reasonable to expect
that some aspects of the current drag between Wigner crystals may be exhibited in a classical
system.

Here, we discuss the current drag between two one-dimensional wires consisting of
classical particles interacting via an unscreened Coulomb potential. The two systems are
close enough that they are coupled by the Coulomb interaction between the wires. This
system is illustrated in figure 1. To get an idea of what to expect from such a system we first
consider a ‘toy model’ consisting of two lines of equally spaced particles interacting via a
periodic potential and moving under a viscous drag force. The main difference between this
system and that in figure 1 is that the spacing between particles is fixed so that the internal
dynamics of the system are ignored. The description of such a system has been considered by
Doering [14] and in an analysis by Cladis et al [15] in the context of the vortex dynamics in
type-II superconductors.

f

U(x-y)d

Figure 1. Illustration of the current drag setup for considered in this classical analysis. A constant
force f drives system one. U (x – y) is the interwire interaction and d is the distance of separation.

In this analysis, two rigid chains of equally spaced particles are taken in the presence
of a viscous drag force Fd = αẋ. Since each chain is rigid, its position can be denoted by
the position of one of its particles. Call x1 the position of chain 1 and x2 the position of
chain 2. The interaction between the two chains is then periodic in x1 – x2 and modelled by
Fi = A sin[(2π/a)(x1 − x2)]∗ where a is the lattice spacing. In addition, the first chain is
driven by a constant force f. In a steady state the equations of motion of the two chains are
given by

αẋ1 = −A sin[(2π/a)(x1 − x2)] + f

αẋ2 = A sin[(2π/a)(x1 − x2)].

Setting φ = (x1−x2), results in the following equation for the difference between the velocities
of the two chains:

φ̇ = f/α − 2A

α
sin(2πφ/a)

∗ As pointed out in reference [15], the exact form of the interaction is not important for the results so long as the
force is periodic in the vortex lattice.
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with solution

T0 =
∫ a/2

0

dφ
f
α

− 2A
α

sin(2πφ/a)

where T0 is the time for the two chains to slip one complete cycle (distance a/2).
Carrying out the integral results in

T0 =
{

∞ for f < 2A (locking)
a
2

1
(f/α)2−(2A/α)2 for f > 2A (slipping)

.

This simple analysis shows the interesting result that, for suitable conditions of the parameters
f and A, the two chains will be locked together with the drag current equal to the drive current.

We now wish to investigate the behaviour of this classical system when internal dynamics
are included. We take therefore as a model of the dynamics of these classical particles the
following Fokker–Planck equation:

∂

∂t
P (�x, �y, t) =

∑
i

D

(
∂2

∂x2
i

+
1

kBT

∂

∂xi
Fi

)
P(�x, �y, t)

+
∑
j

D

(
∂2

∂y2
j

+
1

kBT

∂

∂yj
Fj

)
P(�x, �y, t) (1)

Here, �x = (x1, x2 . . . , xN) labels the positions of N particles in wire 1, �y = (y1, y2 . . . , yN)

labels the positions of particles in wire 2, D is the diffusion constant and T is the temperature.
P(�x, �y, t) is then the probability of having the N particles in layer 1 at positions �x and the N
particles in layer 2 at position �y at time t. The forces present are

Fi = f +
∂

∂xi
V (�x) +

∂

∂xi
U(�x, �y)

in wire 1 and

Fj = ∂

∂yj
V (�y) +

∂

∂yj
U(�x, �y)

in wire 2. The interaction U is taken to be the unscreened Coulomb interaction between the
wires, V is the unscreened Coulomb interaction within each wire and f is a constant force
driving the particles in wire 1. The basic problem is to determine the drag current produced
in wire 2 due to the moving charges in wire 1.

In the numerical analysis of this problem we performed Monte Carlo simulations on
discrete systems. The conducting systems are partitioned into a lattice with the particles
occupying positions at the lattice points. The dynamics of the simulation are determined
by equation (1) which is approximated numerically as follows. For each particle, one of
two possible random directions is chosen. If the particle lowers its energy by moving one
lattice site in that direction, then the move is accepted. Otherwise the move is accepted with
probability e−β�E , where β = 1/kBT and �E is the change in the particle’s energy upon
making this move. This process is completed iteratively for each particle until a steady-state
condition is reached. Simulations were performed to determine the dependence of the drag
current on separation between the two systems. The results are shown in figure 2.

The plot of drag current versus separation shows the fact that the sum of the drive and
drag currents is a constant, J d +J 0 = NDf

kBT
, as can be seen by averaging the right-hand side of

equation (1), (RHS = ∑
i
∂
∂xi
J0 +

∑
j
∂
∂yj
Jd). It also shows that the drag current is significant

only when the distance of separation is of the order of the interparticle spacing or smaller.
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Figure 2. Plot of drag current against wire separation for two one-dimensional wires.

The main feature of interest in this plot, however, is that the drag current, Jd, is essentially
equal in magnitude to the drive current, J0, at small interwire separations. As the separation
between the wires is increased the drag current shows a smooth decrease in magnitude. The
main difference between this plot and the toy model (where internal dynamics are ignored)
is that there does not appear to be an abrupt locking transition. However at sufficiently large
values of the interaction parameter, A, the two chains are essentially locked together with the
drag current equal in magnitude to the drive current. We will now examine to what extent this
classical effect is exhibited in a quantum mechanical system.

3. Wigner crystal ring

3.1. Disorder-free case

In this section we calculate the non-dissipative drag between two perfect Wigner crystal rings at
zero temperature. The basics of non-dissipative drag effects have been considered in previous
papers [16, 17]. The basic system of interest here consists of two metallic rings one of which
is threaded by an Ahranov–Bohm flux,  . This flux shifts the ground state, Eg, of the ring to
a current-carrying state which is calculated according to

J = ∂Eg

∂ 
.

If another ring is brought close to the first one, then the Coulomb interaction will cause a drag
current to be produced in the second ring. Since this is the ground state of the two-ring system
this current is non-dissipative and persists as long as the magnetic flux is present in the first
ring. The difficulties of realizing such a geometry have been addressed in [17]. In particular,
it is assumed that the magnetic flux only penetrates the first ring and the flux through ring
2 is zero. Reference [17] gives several geometries in which such a situation might be realized.
In the following we will assume that the flux only penetrates ring 1 and ignore the difficulties
involved with actually creating such a system.
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In prior works dealing with the nondissipative drag, the two rings have uniform charge
densities and the drag effect is due to coupling of charge fluctuations in each ring. In a system
with zero disorder, the relative magnitude of the drag current produced is typically a small
fraction of the driving current. For two such systems separated by a distance of ∼200 Å the
drag current is on the order of ∼10−4 times the current in the driving system [16]. Based on
the analysis of the last section, we expect that the drag current of two Wigner crystals could
in principle be as large as the driving current.

The model of the one dimensional Wigner crystal that we use here is that proposed in [18]
and [19]. In this model the Wigner crystal is viewed as an elastic chain of spinless electrons.
In the continuum limit, the Wigner crystal of length L, in the presence of an Ahranov–Bohm
flux, , is described by the Lagrangian [19]

L =
∫

dx

[
m

2a

(
u̇2 − s2(u′)2

)
+
h̄

L

 

 0
u̇

]
(2)

where a is the crystal period, m is the electron mass, s is the velocity of sound in the crystal
and  0 is the flux quantum. The field variable u(x,t) describes the local displacement of the
chain at a point x at time t. If the field variable is expanded in a Fourier series

u = 1√
L

∑
k

ckeikθ

we get

L = (µ/2)
∑
k

(
ċ2
k − s2k2c2

k

)− h̄

L
 ̃ċ0

where  ̃ =  / 0. It is clear that the flux will only couple to the zero mode of the ring. So in
dealing with the persistent current of a disorder-free Wigner crystal ring, the internal dynamics
of the ring may be ignored and only the rotation of the ring as a whole is relevant. We wish to
study the interaction between two such Wigner crystal rings as shown in figure 3. We take as

Figure 3. Schematic illustration of the two-ring Wigner crystal setup. The crystal period is a and
u1(x, t) denotes the local displacement of ring 1 and u2(x, t) denotes the local displacement of ring
2. Ring 1 has an Ahranov–Bohm flux,  1, present which creates a persistent current J0 in ring 1.
The interaction between the two crystals, V (u1 − u2) is a function of the relative displacement of
the two crystals and creates a drag current JD in ring 2.
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a model for two disorder-free interacting Wigner crystal rings the following Hamiltonian

H = 1

2M

(
−ih̄

∂

∂u1
− e

c
 1

)2

+
1

2M

(
−ih̄

∂

∂u2
− e

c
 2

)2

+ V0 cos
2π

a
(u1 − u2) (3)

where M = Nm is the total mass of each ring, V0 represents the strength of the inter-ring
interaction,  1 is the flux through ring 1,  2 is the flux through ring 2 and u1,2 represents
the displacement of ring 1, 2 respectively. The first two terms in equation (3) represent the
individual dynamics of rings 1 and 2 respectively. The third term represents the interaction
between the two rings. This interaction term exhibits the modulations in the charge density of
our system and it is evident that the interaction between the chains is periodic in the relative
displacement between the two crystals. For simplicity we model this interaction as a cosine
term; however, the basic features of this analysis should not depend on the particular form of
the periodic potential used.

Transforming to centre of mass and relative angular coordinates φ = 2π
L
(u1 − u2) and

θ = π
L
(u1 + u2), we have in dimensionless form[(

i
∂

∂φ
+
α

2

)2

+
1

4

(
i
∂

∂φ
+ β

)2

+ q cos(Nφ)

]
- = ε- (4)

where α =  1 −  2, β =  1 +  2, q = V0(MR
2/h̄2) and ε = E(MR2/h̄2). Our task is

now to solve equation (4) for the eigenenergy ε.
The Hamiltonian, equation (4), separates into two parts H = Hφ + Hθ with energies

ε = εφ + εθ . The ground state wavefunction is a product-(φ, θ) = S(θ)T (φ). The equation
for the centre of mass coordinates is readily solved, giving

S(θ) = 1√
2π

ein′θ

εθ = 1

4
(n′ + β)2 n′ = 0,±1,±2, . . . . (5)

The equation for the relative coordinate wavefunction is[
−
(

i
∂

∂φ
+
α

2

)2

− q cos(Nφ) + εφ

]
T (φ) = 0. (6)

For α = 0 this reduces to Mathieu’s equation. The energy eigenvalues correspond to the
periodic solutions T(0) = T(2π). We therefore substitute the Fourier expansion

T =
∞∑

−∞
cneinφ

into equation (6) and obtain the following recursion relation for the coefficients cn:

q

2
cn+1 + (ε − [n− α]2)cn +

q

2
cn−1 = 0.

The energy eigenvalues may be found numerically to any desired accuracy by truncating the
set of equations for some cN and searching for the value of ε which gives a zero value for the
appropriate determinant of coefficients [20].

The energy eigenvalues determined in this way, combined with the results of equation
(5), allow the currents in each ring to be determined from J1 = ∂ε

∂ 1
and J2 = ∂ε

∂ 2
| 2 = 0 [17].

The results are shown in figure 4.
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Figure 4. Plots of drive and drag current against the interaction strength. V0 is shown in units of

Ṽ = Nh̄2

mR2 and the current J̃ = J/J1(0) where J1(0) denotes the current in ring 1 at V0 = 0.

Figure 4 shows that the drag current does approach the drive current in magnitude as the
interaction V0 is increased which is qualitatively similar to the classical result. For large values
of the interaction strength, q/N � 3 or

V0 � 3h̄2N/mR2 (7)

the two Wigner crystals have essentially the same current with each having half the current
that one ring would have if isolated.

We want to relate the interaction in equation (3) to the true Coulomb interaction between
our two Wigner crystals. We return to the discrete lattice picture and approximate V0 as
follows. We want to calculate the potential felt by an electron a distance d from a finite
periodic system of length L and period a. We model our system by taking a length L of an
infinite line of electrons centred at x. This system is shown schematically in figure 5.

Figure 5. Schematic model of a periodic system of electrons. The potential on an electron centred
at x and a distance d from an infinite line of electrons is obtained by taking a finite segment of
length L of the infinite chain centred at x.

This potential energy is given by

V =
1
a
(L/2+x)∑

n=− 1
a (L/2−x)

e2√
(x − na)2 + d2
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which can be rewritten as

V =
∫ 1

a (L/2+x)

− 1
a
(L/2−x)

dz
e2√

(x − az)2 + d2

∞∑
n=−∞

δ(z− n)

=
∫ 1

a
(L/2+x)

− 1
a (L/2−x)

dz
e2√

(x − az)2 + d2

∞∑
l=−∞

ei2πlz

= −
∞∑

l=−∞

∫ L/2

−L/2
dz′

a

e2

√
z′2 + d2

ei2π la (x−z)

=
∫ L/2

−L/2
dz′

a

e2

√
z′2 + d2

+2
∞∑
l=1

[∫ L/2

−L/2
dz′

a

e2

√
z′2 + d2

cos

(
2πl

a
z′
)]

cos

(
2πl

a
x

)
.

The first term is a constant in x, therefore we ignore it. For small separation distances
d/a � 1, higher l terms may be ignored and we keep only the l = 1 term. This yields finally

V ≈ 4

a

[∫ L/2

0
dz′

cos
( 2π
a
z′
)

√
z′2 + d2

]
cos

(
2π

a
x

)
.

We can now identify the amplitude V0 in equation (3) for a crystal with N electrons as

V0 = N 4

a

∫ L/2

0
dz′

cos 2π
a
z′√

z′2 + d2
(8)

= N 4

a

∫ L/2a

0
dz

cos(2πz)√
z2 + d2

.

As mentioned in the introduction for a one-dimensional system, a long-range interaction will
lead to the formation of a Wigner crystal [12, 13]. The long-range nature of the Coulomb
force should be apparent for electron densities, n � 1

10aB where aB is the Bohr radius for the
particular ring material [21]. For a typical mesoscopic ring radius of 1 µm, crystal lattice
constant a = 10aB and aB ≈ 2Å, we have L/a > 103 so the upper limit in the integral in
equation (8) may be taken to infinity, which yields

V0 = 4Ne2

a
K0

(
2π
d

a

)
where K0 is the zeroth-order Bessel function. This implies an exponential decrease in the
amplitude of the interaction with increasing separation between the two Wigner crystals.
Comparison with equation (7) shows that the two crystals will be ‘locked’ together at a
distance d/a ≈ 4. So two very low-density perfect Wigner crystals will be essentially locked
together when separated by a distance of four times the lattice constant or less.

3.2. Impurity effects

We now consider the effects of impurities on the dynamics of the Wigner crystal. In the
presence of an impurity, the phase of the Wigner crystal will be pinned. In this case the crystal
ring cannot rotate as a whole so the current as presented in the last subsection is not possible.
It was shown, however, by Rice et al [22], that a new type of current is possible, namely the
tunnelling of solitons through the impurity barrier. It is the tunnelling of solitons that we will
investigate in this section.
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Figure 6. Schematic illustration of the two-ring Wigner crystal setup. The phase φ1,2 =
2π
a u1,2(x, t) where u1,2 is the local displacement of the Wigner crystal. The interaction between

the two rings is V (φ1 − φ2) = W [1 − cos(φ1 − φ2)]. Ring 2 has an impurity of strength Vp that
couples to the phase  2. Figure 6(b) shows a phase shift in the relative coordinate (φ1 − φ2) of π
relative to figure 6(a).

We are interested in knowing the ratio of the drag current in ring 2, to the drive current
in ring 1. We therefore take as an assumption the presence of a current in ring 1 and look for
the relative magnitude of the drag current in ring 2 in the presence of a single impurity. This
system is shown schematically in figure 6. Using equation (2), we take as a description of our
two-ring Wigner crystal system, the following Lagrangian:

L = L1 + L2 −W [1 − cos(φ1 − φ2)] (9)

where

L1 = ma

8π2

{
∂φ1

∂t

2

− s2 ∂φ1

∂x

2
}

(10)

L2 = ma

8π2

{(
∂φ2

∂t

)2

− s2
(
∂φ2

∂x

)2
}

− Vpδ(x) [1 − cos(φ2)] (11)

and the phase φ1,2 = u1,2(x, t)(2π/a).
The first two terms in equation (9) are the Lagrangians describing the dynamics of rings

1 and 2 respectively. The last term describes the interaction between the two rings. We follow
the work of Krive et al [20] and introduce the dimensionless parameter

α = πh̄

msa

which characterizes the magnitude of the quantum fluctuations of the Wigner crystal, and the
parameter

Ts = h̄s
which characterizes the energy scale in a Wigner crystal of length L. We will be concerned
with stiff crystals that are weakly fluctuating, characterized by α � 1.

The basic approach that we will use here is a semiclassical approximation used by Larkin
and Lee [23] in the context of charge density waves and elaborated by Kleinert [24] for a
single particle tunnelling through a barrier . In this approach the probability amplitude of a
soliton tunnelling through an impurity is given by eA/h̄ where A is the action associated with
the tunnelling trajectory obtained by minimizing the function

∫
dt
∫

dxL(τ ), where L(τ ) is
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the Lagrangian, equation (9), with t replaced by the imaginary time τ = it . This approach
amounts to approximating the path integral of the propagator by its value at the classical
trajectory [24].

We now want to answer the following question: given a current in ring 1 that causes a
rotation of the phase by 2π , what is the probability that the phase of ring 2 will also rotate by
2π? It is apparent that there are three possibilities:

(i) φ1 → 2π, φ2 → 0: the phase in ring 2 will remain pinned and ring 1 will rotate on
top of the relative potential between the two ending with a relative phase difference
(φ1 − φ2) = 2π ;

(ii) φ1 → 2π, φ2 → 2π : the phase of ring 2 will tunnel through the impurity thus increasing
by 2π and ending in phase with φ1;

(iii) φ1 → 2π, φ2 → −2π : the phase of ring 2 will counter-rotate with that in ring 1 ending
with a relative phase difference, (φ1 − φ2) = 4π .

Here we have limited our consideration to single tunnelling trajectories. In other words,
each shift of the phase of each ring occurs due to a single tunnelling event and ignore all
multistep tunnelling trajectories. Thus we only consider strong coupling between rings,

WL/( Nh̄
2

mR2 ) � 1, and strong pinning αVp � Ts . We now calculate the tunnelling amplitudes
for each case above.

In case (i), the Lagrangian in equation (9) reduces to

L = − ma
8π2

{(
∂φ1

∂τ

)2

+ s2
(
∂φ1

∂x

)2
}

−W [1 − cos(φ1)] . (12)

This is simply the problem of a single Wigner crystal ring in the presence of a periodic pinning
potential. The classical wave equation resulting from this Lagrangian, in real time, is

ma

8π2

{
φ̈1 − s2φ′′

1

}
+W sin(φ1) = 0.

This is the sine–Gordon equation and it admits the exact soliton solution

φ1 = 4 tan−1
[

exp ±
(
x̃ − ut̃√
1 − u2

)]

where x̃ = ω0
s
x, t̃ = ω0t and

ω0 =
√

4π2W

ma
.

The + sign corresponds to a soliton rotating in the clockwise direction, the − sign corresponds
to an antisoliton rotating in the counterclockwise direction and u is the soliton/antisoliton
velocity. The boundary conditions on such a solution are φ(−L/2, t) = φ(L/2, t). A solution
to this equation that matches this boundary condition is the soliton/antisoliton solution and
has the form

φ1(x, t) = 4 tan−1

[
u sinh

(
x̃/

√
1 − u2

)
cosh

(
ut̃/

√
1 − u2

)
]
.

This solution has the following interpretation: at t = 0 the phase of the crystal is 0, as
t increases, the phase at x = 0 locally increases to 2π creating a region around x = 0 with phase
2π . As t increases this region with 2π phase propagates symmetrically from x = 0 at speed
u towards x = –L/2 and x = –L/2 until the entire ring is at φ = 2π . The Lagrangian, equation
(12), has been considered in the context of charge density wave tunnelling by Bogachek
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et al [25], and there it is noted that the homogeneous (space-independent) soliton solution is
advantageous in the action against any spatially dependent solution for a finite system. The
homogenous solution corresponds to a uniform rotation of the Wigner crystal as a whole and
has the form [25]

φ1(τ ) = 4 tan−1 exp(ω0τ ). (13)

This solution describes the uniform increase of the phase of the entire ring from 0 to 2π in a
time τ0 ∼ 1/ω0. The action associated with this solution is by equation (12)

A1 = −8WL

ω0
= −8


 WL(

N
mR2

)



1/2

. (14)

In case (ii), the relative difference between the two phases does not increase, while the
phase of the centre of mass of the two-ring system increases by 2π . We assume that during
the tunnelling process the two rings remain in phase to minimize the potential energy between
them. If we rewrite equation (9) using φ = φ1 − φ2 and θ = φ1 + φ2, we get the relevant
Lagrangian for case (ii) to be

L = − ma
8π2

{(
∂θ

∂τ

)2

+ s2
(
∂θ

∂x

)2
}

− Vpδ(x)
[

1 − cos

(
θ

2

)]
. (15)

This is the problem of a single Wigner crystal ring tunnelling through an impurity. We
consider the case of strong crystal pinning, αVp � Ts .

The case of soliton tunnelling through an impurity in a strongly pinned charge density
wave was first considered by Larkin and Lee [23]. In their analysis, the tunnelling process
is broken into two stages. The first stage consists of a rapid tunnelling of a length l0 of the
crystal through the impurity in a short time t0 and leaves the crystal in a distorted state of
high potential energy. The second stage consists of a slow relaxation of the crystal from this
distorted state back into a state that minimizes its potential energy.

To describe the first stage of the process Larkin and Lee proposed the following trial
solution to equation (15):

θ = 2πt

t0

(
1 − |x|

l0

)
for 0 < t < t0 and |x| > l0.

It is evident that this solution interpolates between the initial state, θ = 0 for all x at
t = 0, and the final state θ = 2π for x = 0 at t = 2π . The second stage of the process takes
place away from the impurity |x| > l0 and obeys the equation of motion

θ̈ + s2θ ′′ = 0.

The solution to this stage of the tunnelling should obey the periodic boundary conditions of
the ring and match the solution for the first stage at x = –L/2, L/2. This problem has been
considered in the work of Krive et al [19] where the proposed trajectory for the relaxation
stage has the form

φ = π ± 2 arctan

(
(τ − τs)s

|x|
)
.

The action associated with the tunnelling stage of the process is

A2t = − h̄
α

(
C1 + C2

αVp

Th

)
.



5324 J Baker and A G Rojo

where C1,2 are constants. The action associated with the relaxation stage is

A2r = − h̄
α

ln

(
L

2l0

)
.

The length l0 is obtained by minimizing the total action A2T = A2t +A2r with the result that

l0 = h̄s

CαVp

and

A2T = − h̄
α

{
ln

(
αVp

Ts

)
+ C3

}
(16)

where C is a constant and C3 is a constant assumed to be of order unity [23]. Equation (16)
shows the interesting result that the action is only logarithmically dependent on the impurity
for strong pinning.

In case (iii) above, the centre of mass of the two-ring system does not move while the
phase of the relative coordinates increases by 4π . The relevant Lagrangian for this system is
given by

L = − ma
8π2

{(
∂φ

∂τ

)2

+ s2
(
∂φ

∂x

)2
}

− Vpδ(x)
[

1 − cos

(
φ

2

)]
−W

[
1 − cos

(
φ

2

)]
. (17)

This is identical to the Lagrangian in equation (15) with the addition of the term
proportional to W. Since the probability for this process goes as eA it is expected that the
probability for this case will be reduced relative to that in case (ii) by ∼ e−W and can therefore
be neglected.

We are now in a position to analyse the relative magnitude of the drag current JD to the
drive current J0. This ratio is given by

JD

J0
= e

A2T
h̄

e
A1
h̄ + e

A2T
h̄

. (18)

It is clear that if |A1| � |A2T | the two crystals will essentially be locked together. For
purposes of illustration we consider a stiff crystals with α = 0.1 and consider values of Vp for
stiff pinning αVp � Ts .

Figure 7 shows that the impurity effects are not that drastic in determining the value of W
where the locking of the two crystals occur. This is due to the fact that the impurity potential
enters logarithmically into the tunnelling action. Comparison with figure 4(b) shows that the
distance at which the two Wigner crystals become ‘locked’ together is essentially the same
as in the impurity-free case. The main effect of the impurity is then in the magnitude of the
persistent current.
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Figure 7. Plots JD/J0 versus interaction strength W, for α = 0.1 and αVP /Ts = 10 and 100. The

interaction strength is shown in units of W̃ = Nh̄

mR2 and Ṽp = αVp
Ts

.

We can estimate the magnitude of these currents by noting that if two currents are locked
together, then the magnitude of the persistent current for a given flux  should be the same
as a single Wigner crystal ring with twice the mass. This current has been calculated at zero
temperature to be [19]

J0 ∼ Ts
(
Ts

αVp

)1/α

e−C3/α cos

(
2π
 

 0

)
. (19)

We see that the current in equation (19) is much smaller than the disorder-free persistent
current due to the (1/Vp)1/α factor.

In summary, we have analysed the Coulomb drag between two one-dimensional Wigner
crystal rings. For sufficiently large interaction between rings the drag current is essentially
equal in magnitude to the drive current. For an impurity free ring this ‘locking’ of currents
occurs at a separation distance of d ≈ 4a with a the crystal period. We analysed the effect of
a single impurity in the drag ring and found that the two currents are ‘locked’ at essentially the
same distance and the major effect of the impurity is to significantly decrease the magnitude
of the persistent current.
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